Fertilizers and Fuels from Air!
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Q: What was the most important invention of the 20t" century?

A: The Haber-Bosch process.
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N, + 3H, = 2NH.

Can we hydrogenate N,? (the “Haber reaction”)

But even the best Haber catalyst will require H,

. . .
Approx. 25% of total is due to this (obtained from fossil fuel):

Inefficiency. Even at 200 atm we get
only 14% vyield at equilibrium!
Wastes huge amounts of energy.

Fe-based catalyst
high pressure
ca. 400 °C

N, +3H, = ~ 2 NH,

Net reaction:
3H20+N293/2C)2+2NH3

Can we instead obtain the H from H,O?
Instead of making H,, direct reduction of N,??
--no need for H, and no inefficient Haber catalysts?

“Fertilizer from air!”

Using protons and electrons, not H,.

Some of the simplest possible molecules (reactants and products).
But a very difficult reaction
approx. 2% of human energy use

Haber Bosch (HB) process

(As done by plants: the enzyme nitrogenase)

First example
of N, splitting

Ar

Critical Step: Bimetallic N, cleavage
2M+ N=N — M-N=N-M — M=N + N=M
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Our approaches: an example of bimetallic N, binding

Uncommon example of

P'Pr, N, (1 atm) PIPr, 8-p-electron
[ ] Ne/b (5 | _pipr, M=N-N=M system.
N-Motvx, 19 (2ed) _ N-mo=N—N=Ms
‘_ THF, rt, 16 h i 1 PPN Diamagnetic and stable, as
P'Pr, PPr2 predicted. ..
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Traditionally, N, reduction is approached via two routes: the “Alternating” and “Distal” pathways.
Both involve very high energy intermediates like M-NH=NH and M=N-NH.,.

M + N=N

N-Mo
My
l The Distal Pathway eventually gives M=N Qlﬂp;
" N3 cleavage path (and from there it is hopefully easy!) 51
M-N=N > M—N=N-
M-NEN-M = l t
Distal path [ P'Bu; Catalyst
; H*/e +la- H*/e + T+  ————
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\/ -NH; ‘>—Mo—CI
M—N=NH M-NH R 6 TON NH,/[Mo]
. . . 2 N / collidinium triflate as H* source and CoCp*, as reducing agent
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Alternating path

Best catalyst so far!!

N, splitting

12 TON NH,/[Mo] using ethylene glycol and Sml, as PCET
reagent
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