Atmospheric rivers contribute to Greenland Ice Sheet mass loss

Kyle Mattingly

Institute of Earth, Ocean, and Atmospheric Sciences (EOAS), Rutgers, the State University of New Jersey

1. Greenland Ice Sheet (GrIS) mass loss is accelerating

+ GrIS is the single
largest land ice
contributor to global
mean sea level rise
during the 21st
century

+ Has moisture transport by atmospheric rivers (ARs) contributed?

2. **Moisture transport** by ARs **increased** alongside mass loss

AR-IVT = Integrated water vapor transport within AR outlines

3. Strong summer ARs cause intense melt events

Data: Modèle Atmosphérique

reanalyses

Régionale (MAR) v3.9.6 regional

climate model, MERRA-2 and ERA5

4. ARs enhance melt through both "cloudy" and "clear" atmospheric regimes

 SW_{net} (LW_{net}) = net shortwave (longwave) radiation; SHF (LHF) = turbulent sensible (latent) heat flux; Rad. – nonrad. = difference between radiative and turbulent fluxes

Cross sections of moisture and vertical velocity fields on "no AR" vs. AR_{90+} days in **NW Greenland**

MSLP, 2-meter temperature, 10-meter wind, and precipitable water composites

5. ARs bring moisture from unusually low latitudes

- + Example of 10-day air parcel back trajectories ending in SW Greenland on 2012-07-09 (right)
- + Moisture uptake (MU) in the boundary layer (BL) and free troposphere (FT), evaporation minus precipitation (E P), and moisture flux along air parcel paths during summer "no AR" and AR₉₀₊ conditions, 1980–2017 (below)

Data and Methods

Methods
 Identify ARs using MERRA-2 integrated water vapor transport (IVT) data
 Classify summer days by AR intensity (e.g. no AR, AR_{<90}, AR₉₀₊) at the basin scale. Intensity thresholds based on basin-scale climatological

percentile rank (PR) of IVT.

- + Analyze surface energy balance (SEB) and mass balance (SMB) [MAR], synoptic atmospheric conditions [MERRA-2], and vertical cross sections [ERA5] across AR categories
- + Model air parcel back trajectories using HYSPLIT model forced with MERRA-2 data

Acknowledgments and References

This work was supported by a NASA Earth and Space Science Fellowship (NNX16A022H).

Surface mass balance time series image credit: NSIDC / Xavier Fettweis, Université of Liège, Belgium: http://nsidc.org/greenland-today/2018/10/

Mattingly, K. S., T. L. Mote, and X. Fettweis, 2018: Atmospheric river impacts on Greenland Ice Sheet surface mass balance. *Journal of Geophysical Research: Atmospheres*, 123(16), 8538–8560, doi:10.1029/2018JD028714.