

Cities and the Paris Climate Agreement

"Agreeing to uphold and promote regional and international cooperation in order to mobilize stronger and more ambitious climate action by all Parties and non-Party stakeholders, including civil society, the private sector, financial institutions, cities and other subnational authorities, local communities and indigenous peoples . . ."

United Nations

Framework Convention on Climate Change

FCCC/CP/2015/L.9/Rev.1

Distr.: Limited 12 December 2015

Original: English

Conference of the Parties

Twenty-first session Paris, 30 November to 11 December 2015

Agenda item 4(b)

Durban Platform for Enhanced Action (decision 1/CP.17) Adoption of a protocol, another legal instrument, or an agreed outcome with legal force under the Convention applicable to all Parties

ADOPTION OF THE PARIS AGREEMENT

Proposal by the President

Draft decision -/CP.21

Cities Are First Responders: Mitigation

Source: NASA Goddard Space Flight Center, Conceptual Image Lab

Established June 2016

"The largest global coalition of cities committed to climate leadership, building on the commitments of more than **7,100** cities from **119** countries and **six** continents, representing more than 600 million inhabitants, over 8% of the world's population"

~600 Compact cities commit to reducing GHG emissions by nearly 1 billion tons annually by 2030, or 11.6 billion tons between 2010 and 2030.

~6,000 cities of the EU Covenant of Mayors projected to have an estimated reduction of 240 Megatons of CO2e, a reduction of 27% by 2020.

Cities Are First Responders: Adaptation

Climate Projections for UCCRN Cities: **2050s**

Temperatures to rise between **1°C** and **4°C**

Precipitation changes between **–25%** and **+20%**

Sea level rise projections 16 – 50 cm Up to 147 cm in the 2080s

UCCRN ARC3.2 Urban Climate Science Chapter, Bader et al., 2017

City Leaders are at the Right Level of Governance to Take Action

- More direct contact with constituents
- Involved in day-to-day management;
 more practical
- Able to form coordination networks
 with other cities

New York Metropolitan Region Approach

NPCC climate projections apply to 100-mile land radius around Central Park

Bridgeport, Connecticut 2.83 +/- 0.44 mm/year

The Battery, New York 2.84 +/- 0.09 mm/year

Sandy Hook, New Jersey 4.05 +/- 0.21 mm/year

Connecticut Institute for Resilience and Adaptation University of Connecticut

NY Region
Climate Adaptation Network
Regional Planning Association

New Jersey Climate Adaptation Alliance Rutgers University

NYC Structuring Response

❖ West Harlem, Manhattan

New York City Panel on Climate Change

- Panel of experts in climate science, social science, health, and risk management
- Formed in 2008 under Mayor Michael Bloomberg
- Provides regular climate risk information updates to City of New York under Local Law 42
- NPCC 2015 Report provides latest climate change projections and future coastal flood risk maps

Projecting Sea Level Rise in New York City

Antarctic Rapid Ice Melt Scenario

New York City sea-level rise projections relative to 2000-2004 (in).

Baseline (2000-2004) 0"	Low estimate (10 th percentile)	Middle range (25 th to 75 th percentile)	High estimate (90 th percentile)	ARIM scenario
2020s	2"	4-8"	10"	*
2050s	8"	11-21"	30"	*
2080s	13"	18-39"	58"	80"
2100	15"	22-50"	75"	113"

Source: New York City Panel on Climate Change preliminary results, 2017

The 10th, 25th-75th and 90th percentile projections are from NPCC (2015). The ARIM scenario is based on DeConto and Pollard (2016), Kopp et al. (2014; 2017) and informed expert judgments with regard to maximum plausible ice loss rates from Antarctica (see above).

Future Coastal Flood Risk* Maps

Coastal flooding very likely to increase in frequency, extent, and height due to SLR

By 2100, roughly doubles
affected area of 100-year
flood compared to
December 2013 FEMA
Preliminary Flood Insurance
Rate Maps (FIRMs)

Queens is borough with the most land area at risk of future coastal flooding

Shows similar results to static method

*NPCC provides qualitative information about how storms and storm tracks may change NPCC, 20190

Hurricane Sandy

A tipping point for New York City

Hurricane Sandy (left) October, 2012 Hurricane Katrina (right) August, 2005 Source: NASA

without telecommunications in areas with critical facilities

2 Million

people lost power at some point

All Train Tunnels

into Manhattan were flooded (MTA, LIRR, PATH, Amtrak)

5.4 Million

weekday riders were displaced from subway shut down

6 Hospitals

had to close due to the storm

2000 Patients

had to be evacuated

Source: PlaNYC, 2013

Resilience

Portfolio Approach

Social Programs

- Neighborhood watch programs
- Digital alerts
- Cooling centers
- Volunteer coastal rehabilitation projects

Ecosystem-based adaptation

- Green roofs
- ❖ Bio-swales, porous pavement
- Oyster beds
- Wetland restoration

Preliminary NYC Climate Resiliency Design Guidelines

- Science-informed policy based on NPCC 2015 projections
- Incorporate forward-looking climate data into the design of all New York City capital projects
- Provides consistent methodology for engineers, architects, and planners to design resilient facilities

A facility safe from tidal inundation in the 2020s (left) compared to the same facility inundated by high tides and sea level rise in the 2080s (right).

NYC Flood Hazard Mapper BETA

NYC Flood Hazard Mapper, a tool within the Guidelines, helps determine tidal inundation risk to facilities during their useful life due to sea level rise

Resilience Projects in NYC

Rebuilt Park

East Side, Manhattan

Soft-Edge Brooklyn Bridge Park

Big U Berm and Park
Lower East Side, Manhattan

Future Berm and Sea Wall
West Side, Manhattan
OneNYC, 2017

Cross-Jurisdictional Cooperation

- City, State/Province, Nation, Multi-Country Region, International
- Sandy Recovery Map Tools developed by NOAA,
 US Army Corps of Engineers, and NPCC
- Discussions ongoing to incorporate both current and future flood risks as a result of sea level rise into FEMA map products
- Financing of resilience projects, e.g., national funding, Green Climate Fund
- New York/New Jersey cooperation

Future 100-year floodplain boundaries with sea level rise for New York & New Jersey (above) and New York City (below)

UCCRN Mission

Provide knowledge that enables cities* to fulfill their climate change leadership potential in both mitigation and adaptation, with a focus on developing resiliency

Over **800** scientists, scholars, and expert practitioners spanning urban systems

More than **100** developed and developing cities around the world

Formed in **2007** at the time of the C40 Summit in New York

UCCRN ARC3.2 Workshop. Siemens, The Crystal, London, UK. 2014

ARC3 Report Series

publication in 2011 – First UCCRN **Assessment Climate** Report on Change Cities (ARC3) 100 authors from 50+ cities around the world and 45+ Case Studies

Launched at the ICLEI Resilient Cities Congress in Bonn, Germany in June 2011

Second UCCRN Assessment Report on Climate Change and Cities (ARC3.2)

350+ authors from over 100 cities 16 Chapters; 115+ Case Studies

Launched at Habitat III in Quito, Ecuador

Summary for City Leaders

Launched at COP21 Climate Summit for Local Leaders, **Paris**

ARC3.2 Framework

UCCRN Regional Hubs

- Conduct direct outreach to city decision-makers at the regional level, based on their needs
- Develop relationships with regional researchers so as to build capacity for knowledge partnerships with city stakeholders
- Generate region-specific climate change knowledge
- Link regional knowledge partnerships to global UCCRN networks

New York, NY, USA

UCCRN Secretariat

UCCRN North American Hub

Rio de Janeiro, Brazil

UCCRN Latin America Hub

Philadelphia, PA, USA

Aalborg, Denmarl
UCCRN Nordic Node
Paris, France

UCCRN European Hub

Dhaka, Bangladesh

Durban, South Africa

UCCRN African Hub

Bangkok, Thailand

5 UCCRN New York Secretariat serves to coordinate international network and provide guidance

Sydney, Melbourne, and Canberra, Austra

UCCRN Hub for Australian Cities

Shanghai, China

UCCRN East Asian Hub

Manila, Philippines

ARC3 Case Study Docking Station

ARC3.2 Case Study Cities

Population of Metropolitan Area

Large (5,000,000 to 10,000,000 inhabitants)

Big (1,000,000 to 5,000,000 inhabitants)

Intermediate (500,000 to 1,000,000 inhabitants)

Small (100,000 to 500,000 inhabitants)

Very Small (ILess Than 100,000 inhabitants)

Pathway 1: Integrate Mitigation and Adaptation

Actions that reduce greenhouse gas emissions while increasing resilience are a win-win

Integrating mitigation and adaptation deserves high priority in urban planning, design, and architecture

Portfolio of approaches includes engineering, ecosystem-based adaptation, policies, and social programs

Taking the local context of each city into account is necessary in order to choose actions that result in the greatest benefits

District heating and cooling (DHC) system in Helsinki provided by Helen Oy. © Kirmo

Pathway 2: Coordinate Disaster Risk Reduction and Climate Change Adaptation

Effects of Hurricane Sandy in Staten Island, NYC. Photo, Somayya Ali Ibrahim, 2012

This requires a new, systems-oriented, multi-timescale approach to risk assessments and planning that accounts for emerging conditions within more-vulnerable communities and sectors, as well as across entire metropolitan areas

Pathway 3: Co-generate Risk Information

Risk assessments and climate action plans co-generated with stakeholders and scientists are most effective

Processes that are inclusive, transparent, participatory, multisectoral, multi-jurisdictional, and interdisciplinary are robust

They enhance relevance, flexibility, and legitimacy

Stakeholders visualize climate risks in Bash Kaiyndy, Kyrgyzstan.

Photo by Shaun Martin, WWF

Pathway 4: Focus on Disadvantaged Populations

Urban poor, the elderly, women, minority, recent immigrants and other marginal populations often face greatest risks due to climate change

Fostering greater equity and justice within climate action increases a city's capacity to respond to climate change

This improves human well-being, social capital, and opportunities for sustainable development

People's Climate March in New York City on September 21, 2014.

Photo by Annel Hernandez

Pathway 5: Governance, Finance, and **Knowledge Networks**

Sound urban climate governance requires longer planning horizons, effective implementation mechanisms, and coordination

Access to municipal and outside financial resources is needed to fund climate change solutions

Connecting with national and international networks advances city-level climate planning and implementation

Advancing city creditworthiness, developing robust city institutions, and participating in city networks enable climate action

 ${}^{ullet} L^{ullet} L^{ullet} L$ Local Governments for Sustainability

The 5 Pathways to Urban Transformation

Inputs to the IPCC*

- IPCC Special Report on Climate Change and Cities will be included in the AR7 cycle (2023-2028).
- International Scientific Conference on Climate Change and Cities will take place early in the AR6 cycle, in March 2018, in Edmonton, Canada.
 - Supported by a diverse group of organizations identified as **#CitiesIPCC** C40, Cities Alliance, ICLEI, Future Earth, SDSN, UCLG, UN-Habitat, UN Environment and WCRP.
 - Half of Cities and Climate Change Science Conference Steering Group are members of UCCRN.

ABOUT CONFERENCE PROGRAMME GET INVOLVED HOST CITY: EDMONTON BEYOND THE CONFERENCE MEDIA

*And next ARC3.3 Report

Representatives of IPCC Cities and Climate Change Science Conference Steering Group at ICLEI Resilient Cities 2017, Bonn, Germany

For more information, visit:

Urban Climate Change Research Network (UCCRN) www.uccrn.org/join

New York City Panel on Climate Change (NPCC) http://onlinelibrary.wiley.com/doi/10.1111/nyas.2015.1336.issue-1/issuetoc

Consortium for Climate Risk in the Urban Northeast (CCRUN) http://www.ccrun.org/

Columbia University Center for Climate Systems Research (CCSR) http://ccsr.columbia.edu/

Future Coastal Flood Heights in NYC

	Low estimate (10 th percentile)	Middle range (25 th to 75 th percentile)	High estimate (90 th percentile)
2020s			
Annual chance of today's 100-year flood (1%)	1.1%	1.1-1.4%	1.5%
Flood heights associated with 100-year flood (11.3 ft)	11.5 ft	11.6-12.0 ft	12.1 ft
2050s			
Annual chance of today's 100-year flood (1%)	1.4%	1.6-2.4 ft	3.6%
Flood heights associated with 100-year flood (11.3 ft)	12.0 ft	12.2-13.1 ft	13.8 ft
2080s			
Annual chance of today's 100-year flood (1%)	1.7%	2.0-5.4%	12.7%
Flood heights associated with 100-year flood (11.3 ft)	12.4 ft	12.8-14.6 ft	16.1 ft

Source: NPCC, 2015