Selective Electrochemical Hydrogenation of Carbonyl Substrates to Alcohols

Navar Mercer White and Kate M. Waldie

We thank Rutgers University and the National Science Foundation (CHE-2247645) for support of this project.

Introduction and Motivation Synthesis of Iridium Complexes 5-7

Controlled Potential Electrolysis (CPE)

Biomass is a renewable carbon source from which bio-oil can be produced via pyrolysis for sustainable fuel production. However, raw bio-oil must be upgraded to improve its shelf life for storage and transportation, as the presence of small carbonyl compounds leads to condensation and polymerization reactions that contribute to its chemical instability. ¹ We aim to upgrade raw bio-oil by directly integrating renewable energy into electrochemical ionic hydrogenation using metal-hydride catalysts.

The favorability of carbonyl ionic hydrogenation is governed by hydricity $(\Delta G_{H}$ ₋) of the metal-hydride and the p K _a of the Bronsted acid.^{3,4}

- 1. Wang, Y., et al. *Energy & Fuels* **2020**, *34* (7), 7915-7928.
- 2. Barrett, S. M., *et al. J. Am. Chem. Soc.* **2014**, *136*, 14718.
- 3. Fokin, I.; Siewert, I. *Chemistry* **2020**, *26*, 14137.
- 4. Muckerman, J. T., *et al. PNAS* **2012**, *109*, 15657.
- 6. Abura, T., *et al. J. Am. Chem. Soc.* **2003**, *125*, 4149.
- 7. Dadci, L. *et al. Inorg. Chem.* **1995**, *34*, 306.
-

5. Brewster, T. P., *et al. J. Am. Chem. Soc.* **2013**, *135*, 16022. 8. Katipamula, S.; White, N. M.; Waldie, K. M. *Chem Cat*. **2023**, 3, 100561.

RUTGERS-NEW BRUNSWICK School of Arts and Sciences

References & Acknowledgements

Using Thermodynamics as a Guide

By CV, the Ir-hydride can be generated by 2e⁻/1H⁺ reduction of the Irchloride or triflate at mild potentials. We are now using CPE to evaluate the electrocatalytic activity of this system for acetophenone reduction.⁸ Stronger Brønsted acids result in significant H_2 evolution at the electrode surface. The combination of Lewis acids with milder Brønsted acids is promising for obtaining higher faradaic efficiencies.

1 mol% [IrCl] 10 mol% Lewis acid [Bu₄N][PF₆], MeCN

O GALLEY LIA DE OH + [M−H] + HA → → Y'' + [M]⁺ + A[−] $\Delta\mathsf{G}_\mathsf{rxn1}$

 $ΔG_{rxn1} = ΔG_{H−}[M−H] + 1.364pK_a(HA) − 88$

(acetoneH +)

Formic Acid $pK_a = 20.9$

For [Ir-H], ΔGH− = 62 kcal/mol ∴ **p***K***^a (HA) < 19 to favor hydrogenation**

To avoid the competitive formation of H_2 gas, protonation of the [Ir-H] by the Bronsted acid must be thermodynamically unfavorable.^{2,3}

 $\Delta G_{\mathsf{H}^{\mathsf{-}}}[\mathsf{M}\mathsf{-}\mathsf{H}]$ [M−H] [M]⁺ + H – H^+ + A^- HA 1.364p*K*^a (HA) $\mathsf{H}^{\texttt{+}}$ + $\mathsf{H}^{\texttt{-}}$ \longrightarrow H_{2} −ΔG_{H−}(H₂) Trifluoroacetic acid $pK_a = 12.65$ [M−H] + HA H² + [M]⁺ + A − $\Delta\mathsf{G}_{\mathsf{rxn2}}$ HO H_0 H_0 ΔGrxn2 = ΔGH−[M−H] + 1.364p*K*^a (HA) – 76 Oxalic acid $For [Ir-H], \Delta G_{H-} = 62 \text{ kcal/mol}$ $pK_a = 14.5$ \therefore **p** K_a (HA) > 10 to disfavor H₂ evolution

$$
\begin{array}{c}\nO \\
\text{Ph}^+ & 2e^- + 2H^+ \\
\end{array}
$$

catalyst modifications:

The Ir-hydride complex is readily obtained from the Ir-chloride precursor. We have also prepared an Ir-triflate complex, which is converted into the Ir-MeCN species in acetonitrile solution (see below).

