

Introduction and Motivation

Biomass is a renewable carbon source from which bio-oil can be produced The Ir-hydride complex is readily obtained from the Ir-chloride precursor. We have also prepared an Ir-triflate complex, which is converted into the Irvia pyrolysis for sustainable fuel production. However, raw bio-oil must be MeCN species in acetonitrile solution (see below). upgraded to improve its shelf life for storage and transportation, as the presence of small carbonyl compounds leads to condensation and 1. Formic acid, pH 3 25°C, 1 h 2 eq. AgOTf Reflux, 1 d polymerization reactions that contribute to its chemical instability.¹ We aim to upgrade raw bio-oil by directly integrating renewable energy into 2. NaPF₆ electrochemical ionic hydrogenation using metal-hydride catalysts.

Using Thermodynamics as a Guide

The favorability of carbonyl ionic hydrogenation is governed by hydricity $(\Delta G_{H_{-}})$ of the metal-hydride and the pK_a of the Bronsted acid.^{3,4}

[M−H] → [M] ⁺ + H [−]	ΔG _H -[M–H]
$HA \longrightarrow H^+ + A^-$	1.364p <i>K</i> a(HA)
$ \downarrow \downarrow$	−1.364p <i>K</i> _a (ac
$\overset{OH^+}{\longleftarrow} + \overset{H^-}{\longrightarrow} \overset{OH^+}{\overset{H^+}}{\overset{H^+}{\overset{H^+}}{\overset{H^+}{\overset{H^+}}{\overset{H^+}{\overset{H^+}}{\overset{H^+}{\overset{H^+}}{\overset{H^+}}{\overset{H^+}{\overset{H^+}}{\overset{H^+}}{\overset{H^+}}{\overset{H^+}}}}}}}}}}}}}$	−ΔG _{H−} [iPrOH]
O OH	

 $\bigcup_{H} + [M-H] + HA \longrightarrow \bigcup_{H} + [M]^{+} + A^{-}$ ΔG_{rxn1}

 $\Delta G_{rxn1} = \Delta G_{H-}[M-H] + 1.364 p K_a(HA) - 88$

For [Ir-H], $\Delta G_{H-} = 62$ kcal/mol $\therefore pK_a(HA) < 19$ to favor hydrogenation

To avoid the competitive formation of H_2 gas, protonation of the [Ir-H] by the Bronsted acid must be thermodynamically unfavorable.^{2,3}

 $\Delta G_{H-}[M-H]$ $[M-H] \longrightarrow [M]^+ + H^ HA \longrightarrow H^+ + A^-$ 1.364p*K*_a(HA) $H^+ + H^- \longrightarrow H_2$ $-\Delta G_{H-}(H_2)$ Trifluoroacetic acid $pK_a = 12.65$ $[M-H] + HA \longrightarrow H_2 + [M]^+ + A^- \Delta G_{rxn2}$ НО₩ОН $\Delta G_{rxn2} = \Delta G_{H-}[M-H] + 1.364 p K_a(HA) - 76$ Oxalic acid For [Ir-H], $\Delta G_{H_{-}} = 62$ kcal/mol p*K*_a = 14.5 $\therefore pK_{a}(HA) > 10$ to disfavor H₂ evolution

Selective Electrochemical Hydrogenation of Carbonyl Substrates to Alcohols

Navar Mercer White and Kate M. Waldie

Synthesis of Iridium Complexes⁵⁻⁷

cetoneH⁺)

Formic Acid p*K*_a = 20.9

LA	HA	[HA] (mM)	Time	[IrH] Conv. (%)	Alcohol Yield (%)		
None	TFA	15	1 d	89	84		
Zn(OTf) ₂	TFA	20	< 10 min	100	87		
Zn(OTf) ₂	Oxalic	165	< 1 h	100	62		
Zn(OTf) ₂	Benzoic	98	< 1 h	100	54		
LiBF ₄	TFA	15	1 d	85	83		
Mg(OTf) ₂	TFA	15	1 d	68	58		
Ca(OTf) ₂	TFA	15	< 3 h	100	70		
Ba(OTf) ₂	TFA	15	< 2 d	100	80		
Sc(OTf) ₃	-	15	-	LA reacts di	LA reacts directly with Ir-H		
La(OTf) ₃	-	15	-	LA reacts di	LA reacts directly with Ir-H		
AI(OTf) ₃	-	15	-	LA reacts di	LA reacts directly with Ir-H		

Controlled Potential Electrolysis (CPE)

By CV, the Ir-hydride can be generated by 2e⁻/1H⁺ reduction of the Irchloride or triflate at mild potentials. We are now using CPE to evaluate the electrocatalytic activity of this system for acetophenone reduction.⁸ Stronger Brønsted acids result in significant H_2 evolution at the electrode surface. The combination of Lewis acids with milder Brønsted acids is promising for obtaining higher faradaic efficiencies.

$$Ph$$
 + $2e^-$ + $2H^+$

LA	HA	[HA] (M)	E _{app} (V)	Time (h)	Alcohol Yield (%)	FE _{alcohol} (%)
None	TFA	1.0	-1.01	21	60	10
Zn(OTf) ₂	Benzoic	0.5	-1.01	3.5	18	54
Zn(OTf) ₂	Formic	0.5	-1.15	2.5	4.1	3.7
achieve hig efficiency. netal platir solubility of acetonitrile, are testing with other		on and far include cathode, p oxylate salt titive HER. ate precata	adic Zn Door s in We alyst and			$R = NH_2$ $R = CF_3$ $R = OMe$ $R = Me$ $R = Me$ $R = M$

References & Acknowledgements

- 1. Wang, Y., et al. *Energy & Fuels* **2020**, *34* (7), 7915-7928.
- 2. Barrett, S. M., et al. J. Am. Chem. Soc. 2014, 136, 14718.
- 3. Fokin, I.; Siewert, I. *Chemistry* **2020**, *26*, 14137.
- 4. Muckerman, J. T., et al. PNAS 2012, 109, 15657.
- 6. Abura, T., et al. J. Am. Chem. Soc. 2003, 125, 4149.
- 7. Dadci, L. et al. Inorg. Chem. 1995, 34, 306.

We thank Rutgers University and the National Science Foundation (CHE-2247645) for support of this project.

1 mol% [IrCl] 10 mol% Lewis acid $[Bu_4N][PF_6], MeCN$

5. Brewster, T. P., et al. J. Am. Chem. Soc. 2013, 135, 16022. 8. Katipamula, S.; White, N. M.; Waldie, K. M. Chem Cat. 2023, 3, 100561.

RUTGERS-NEW BRUNSWICK School of Arts and Sciences