

RUTGERS-NEW BRUNSWICK School of Engineering Department of Civil and Environmental Engineering

INTRODUCTION

risk assessments has risen in flood locations across the globe particularly for vulnerable populations that lack the financial resources to design large-scale flood mitigation structures. Conventionally, hydrologic models are calibrated and used to optimize mitigation strategies. The data and computational demands of these models implemented across large spatial scales make them an inefficient tool for resourcelimited countries to access and utilize. *Machine* learning (ML) based models are a viable alternative that counters these drawbacks. The potential exists for employing ML models to spatially inform on future flood risk under various climate scenarios.

OBJECTIVE

Birmingham

Alabama

To investigate the level of agreement that ML models have with traditional models to evaluate changes in future flood risk

STUDY AREA/ DATA

Stations statistically similar in performance by HGBR and EF5 models to the observed USGS AMS

DATASETS

Variables	Model	Dataset	
Meteorological, streamflow & static	HGBR (Train)	CAMELS-CONUS	Catc 2000
Observation Precipitation & Temperature (HGBR only)	EF5 (Calibrate)	MULTI-RADAR MULTI-SENSOR (MRMS) QPE - Current	1-km 2016
	HGBR (Train)	Daymet-North America (Ver 4)	1-km
	EF5 & HGBR (Test)	NOAA Climate Prediction Center (CPC)	0.25
GCM-based Precipitation & Temperature	EF5 & HGBR	Localized Constructed Analogs (Ver 2) – Coupled Model Intercomparison Project (LOCA- CMIP6)	6-km 1950 2015
Annual Peak Stream Flow	GEV-HGBR & GEV-EF5	U.S. Geological Survey	Annı gaug

Future flood risk assessment: Comparing ML-based and traditional hydrologic modeling approaches Zimeena A. Rasheed¹; Efthymios I. Nikolopoulos¹ ¹ Civil and Environmental Engineering Department, Rutgers University – New Brunswick, NJ, USA.

• Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniquesx for hydrological

z<u>imeena.rasheed@rutgers.edu</u> | <u>efthymios.nikolopoulos@rutgers.edu</u> | <u>www.hydrores.com</u>

nate S	SSP*	MID-CENTURY			END-CENTURY				
		10-yr	20-yr	50-yr	100-yr	10-yr	20-yr	50-yr	100-yr
M2	2.45	0.401	0.501	0.390	0.341	0.020	0.010	0.068	0.178
	5.85	0.256	0.493	0.723	0.718	0.354	0.605	0.740	0.877
-MR	2.45	0.050	0.081	0.095	0.211	0.965	0.968	0.845	0.967
	5.85	1.000	0.730	0.436	0.287	1.000	0.855	1.000	0.909
13	2.45	0.137	0.087	0.147	0.200	0.141	0.772	0.933	0.818
	5.85	0.005	0.061	0.050	0.138	0.890	0.839	0.938	0.822
/ 14	2.45	1.000	0.798	1.000	0.847	0.458	0.472	0.461	0.499
	5.85	0.348	0.340	0.340	0.398	0.036	0.155	0.292	0.359