
ML models may serve as efficient and proactive tools toward flood prediction and mitigation strategies catering to a changing climate - 
especially for vulnerable communities that are resource-deficient and data-scarce or ungauged 

❑ Uncertainty in future flood projections are dominated by climate-forcing uncertainty
❑ Some GCMs indicate the greatest percentage flood change as soon as mid-century
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To investigate the level of agreement that ML 
models have with traditional models to evaluate 
changes in future flood risk
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Future flood risk assessments has risen in 
locations across the globe particularly for 
vulnerable populations that lack the financial 
resources to design large-scale flood mitigation 
structures. Conventionally, hydrologic models are 
calibrated and used to optimize mitigation 
strategies. The data and computational demands 
of these models implemented across large spatial 
scales make them an inefficient tool for resource-
limited countries to access and utilize. Machine 
learning (ML) based models are a viable 
alternative that counters these drawbacks. The 
potential exists for employing ML models to 
spatially inform on future flood risk under various 
climate scenarios. 

The HGBR is a 
viable ML approach 
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relative change in 
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HGBR model trained on FLOOD PEAKS
(Rasheed et al., 2022, 2024)  PRD = -6.17% (This indicates a slight 

underestimation of flood peaks)

CREST

GEV-LMOM: 
Generalized 
Extreme 
Value Distribution 
with L-moment 
approach for GEV 
parameter estimates 
(Hu et al. 2020)

FUTURE FLOOD RISK COMPARISON

MID-CENTURY (2030-2064) 
END-CENTURY (2065-2100)

     SSP 2.45 (LOW) 
     SSP 5.85 (HIGH)

HISTORIC COMPARISON
Red and blue bars indicate range of EF5 and HGBR predictions from multiple GCMs

Brunner-Munzel test for similarity in relative change (in future flood w.r.t. historic) between the 
two models

CONCLUSIONSVariables Model Dataset Resolution Reference
Meteorological, 
streamflow & static HGBR (Train) CAMELS-CONUS Catchment-averaged; daily

2000 – 2018
Addor et al. 2017;
Newman et al. 2015

Observation 
Precipitation & 
Temperature (HGBR 
only)

EF5 (Calibrate) MULTI-RADAR MULTI-SENSOR 
(MRMS) QPE - Current

1-km, hourly
2016 - 2023 Zhang et al. 2019

HGBR (Train) Daymet-North America (Ver 4) 1-km, daily; 1980-2023 Thornton et al. 2022
EF5 & HGBR 
(Test)

NOAA Climate Prediction Center 
(CPC) 0.25 deg, daily; 1948 – 2023 Xie et al. 2007; Chen et 

al. 2008

GCM-based 
Precipitation & 
Temperature

EF5 & HGBR

Localized Constructed Analogs 
(Ver 2) – Coupled Model 
Intercomparison Project (LOCA-
CMIP6)

6-km, daily
1950 – 2014 (historic);
2015 – 2100 (future)

Pierce et al. 2015

Annual Peak Stream 
Flow

GEV-HGBR & 
GEV-EF5 U.S. Geological Survey Annual Max Values across 

gauges
U.S. Geological Survey, 
NWIS

Global Climate 
Models

SSP*
MID-CENTURY END-CENTURY

10-yr 20-yr 50-yr 100-yr 10-yr 20-yr 50-yr 100-yr

ACCESS-CM2
2.45 0.401 0.501 0.390 0.341 0.020 0.010 0.068 0.178

5.85 0.256 0.493 0.723 0.718 0.354 0.605 0.740 0.877

BCC-CSM2-MR
2.45 0.050 0.081 0.095 0.211 0.965 0.968 0.845 0.967

5.85 1.000 0.730 0.436 0.287 1.000 0.855 1.000 0.909

EC-Earth3
2.45 0.137 0.087 0.147 0.200 0.141 0.772 0.933 0.818

5.85 0.005 0.061 0.050 0.138 0.890 0.839 0.938 0.822

GFDL-ESM4
2.45 1.000 0.798 1.000 0.847 0.458 0.472 0.461 0.499

5.85 0.348 0.340 0.340 0.398 0.036 0.155 0.292 0.359

Return Periods (yr):
10 | 20 | 50 | 100

Each cell has these parameters & processes*

KINEMATIC 
WAVE

Future 
Perspectives

*Credit: Module 1.2 Introduction to Hydrological 
Models (Slide 35); EF5

Stations statistically 
similar in performance 

by HGBR and EF5 
models to the 

observed USGS AMS
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