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Introduction

o Carbon neutrality is the balance between anthropogenic greenhouse gas (GHG) emissions
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' Baseline carbon footprint in 2016 without carbon sequestration

ObjeCtives o Buildings and employee commuting > 90% of the baseline carbon footprint.

o Model a baseline carbon footprint of Duke Farms, a o Reduced heating in non-farm buildings due to geothermal energy (31,800 kg CO2-eq).
farm and environmental education center o Credit for operation of solar array system included.
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o Conduct scenario analyses of various additional @ ®)

carbon sequestration practices and renewable energy
options to assess a path towards carbon neutrality. ]
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— Combining soil measurements and modeling promising in determining carbon sequestration rates compared to literature

New PV system values commonly used in life cycle assessment.
Photo credit: Duke Farms

Additional (= beyond business-as-usual) carbon sequestration o Recommendations

— Further reducing GHG emissions in building subsystems.

5 SndUss—TATeR o) — Promoting less carbon-intensive cars and more working from home, if possible.
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— Planting additional trees in floodplain.

— As most data are point estimates, performing uncertainty analysis to improve the robustness of the carbon footprint analysis.

— Expanding the current carbon footprint analysis taking time into account as climate change impact associated with grid energy
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