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Introduction

Final Notes

Background Context
Prioritizing people and property:
	 Flash floods endanger health, property, and mobility, in particular on households 
with less institutional, economic and social privilege. In the United States, floods kill 
more people than tornadoes, hurricanes or lightning (FEMA, 2022). Floods are the 
most frequent natural disaster (WHO, 2021) which can cause power outages, pollute 
drinking water, displace people from their homes, damage community infrastructure 
which can negatively affect a person’s life, especially if not aware of the unfortunate 
circumstances. 

‘Bottom-up’ modeling with machine learning:
	 Flood risk modeling typically uses fixed inputs from the physical environment and 
weather to generate predictions. In this project, we work from the ‘ground up’ using 
sources of reported flood incidents. This builds on literature using crowdsourced data 
on flash flood hotspot and other hazard events, such as from 311 sources  (Liu et al, 
2024) or waze data (Esparza et al 2023). Others use community and crowdsourced 
data primarily to check errors and groundtruth flood forecasting data (e.g. Puttinao-
varat and Horkaew, 2020). 
	 Across flash flood modeling with similar datasets and challenges, variations 
on the random forest model have often been found to be most effective (Band et al 
2020; Liu 2024), or at least relatively similar in accuracy to other approaches (Ara-
bameri 2020; Hosseini et al 2020).
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Discussion Conclusion
Potential policy and advocacy uses
 • Guide investments for stormwater infrastructure; DCIA (impervious area with drainage) may 
matter more than simply the impervious ratio in high-rainfall events (Sohn et al 2020).
 • Help community organizations in underserved areas advocate for other forms of assistance
 • Assist public health targeting of programs (e.g. mold abatement)
 • Help organizations or local governments ‘flag’ dangerous areas that have recurrent flooding

Limitations
 • The model depends on reported flood events, therefore it is biased towards dense areas
 • The non-flood points are also dependent on the existence, or lack of, flood reports
 • There are additional factors which were not considered for this model, but could be incorpo-
rated into one in the future, such as soil absorbtion and drainage systems

Future Research
 • The accuracy of the model can be tested by comparing flood events to the prediction map.

	 This project highlights the critical importance 
of prioritizing people and property in flood risk 
assessment, particularly for vulnerable commu-
nities. Floods are a frequent and deadly natural 
disaster, causing widespread harm to health, 
property, and mobility. By adopting a ‘bot-
tom-up’ approach to flood modeling, this project 
leverages crowdsourced data to improve predic-
tion accuracy and capture the localized impact 
of flash floods. Using reported flood incidents 
and applying machine learning techniques, es-
pecially those rooted in random forest meth-
odologies, this approach offers an enhanced, 
data-driven method for assessing flood risk and 
informing protective actions.
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