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Prioritizing people and property:

Flash floods endanger health, property, and mobility, in particular on households »
with less institutional, economic and social privilege. In the United States, floods Kkill
more people than tornadoes, hurricanes or lightning (FEMA, 2022). Floods are the
most frequent natural disaster (WHO, 2021) which can cause power outages, pollute
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drinking water, displace people from their homes, damage community infrastructure
which can negatively affect a person’s life, especially if not aware of the unfortunate el L
circumstances. Fo oo S A e U
‘Bottom-up’ modeling with machine learning: M e ¥

Flood risk modeling typically uses fixed inputs from the physical environment and R
weather to generate predictions. In this project, we work from the ‘ground up’ using I Jai A e L 21
e i o e e oy o o map Gombined el clevation, e
2024) or waze data (Esparza et al 2023). Others use community and crowdsourced f,ﬁ/ f . . . impervious coverage) and FEMA flood zones
data primarily to check errors and groundtruth flood forecasting data (e.g. Puttinao- %’““"*‘"’a"eys“‘" Round Valley Reservoir / Whitehouse Station

varat and Horkaew, 2020).

Across flash flood modeling with similar datasets and challenges, variations
on the random forest model have often been found to be most effective (Band et al
2020; Liu 2024), or at least relatively similar in accuracy to other approaches (Ara-
bameri 2020; Hosseini et al 2020).
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Methodology
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