

# High Strength, Low Carbon Recycled Concrete

Richie Campbell, Dr. Richard Riman

1. Department of Material Science and Engineering, Rutgers University, Piscataway, New Jersey, 08854

#### Abstract

- Developing fully recycled, low-carbon concrete provides a path toward sustainable construction and contributes to lowering the annual CO<sub>2</sub> emissions produced globally by traditional concrete production.
- This research investigates the integration of concrete waste material into wollastonite-based carbonate concrete formulations.

## Background

**Problem:** Traditional concrete production contributes to approximately 8% of global CO<sub>2</sub> emissions.

**Goal:** Develop fully recycled, low-carbon concrete using waste concrete and wollastonite, cured via carbonation at low temperature.

**Significance:** Demonstrates the use of circular construction and CO<sub>2</sub> storage utilization. These cementitious materials were formed and carbonated without exceeding 125°C.

## Methods

#### **Materials:**

- Wollastonite (CaSiO<sub>3</sub>): Binder.
- Sand and 3/8" granite aggregate: filler
- Crushed concrete rubble; Sieved into three particle size fractions
  - Coarse: >1.18mm <5.6mm.
  - Medium: >300µm <1.18mm.
  - Fine: <300µm.
- Different formulations were mixed and casted into 3" × 6" cylinders



Figure 1: Cast Cylinders of Wollastonite and concrete rubble.

CO<sub>2</sub> Curing Process: Carbonated at 90°C and <15 psi in 48or 72-hour durations.



Figure 2: Cylinders in carbonation chamber.

## **Mechanical Testing:**



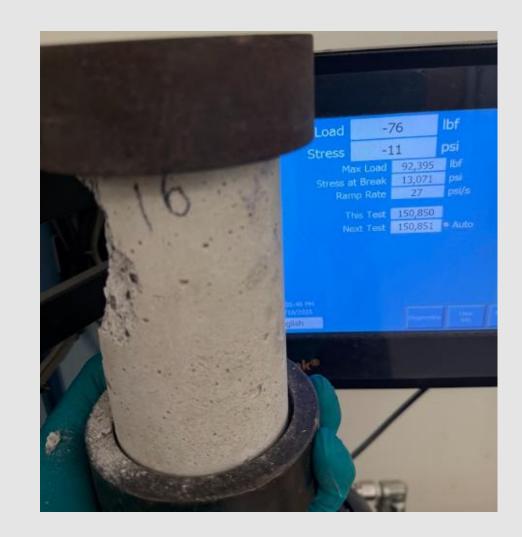



Figure 3 and 4: Compression tested cylinders.

### Results

- Formulations containing
  - I. wollastonite, 3/8" aggregate, sand and concrete rubble (Set #1, #2, #3)
  - II. wollastonite and crushed concrete rubble only (Set #4)

were tested under various conditions

Table 1: Processing conditions of different formulations

| Sample<br>Set | Demolded<br>Time/hr | Drying Time,<br>Temp | Carbonation duration, Temp |
|---------------|---------------------|----------------------|----------------------------|
| #1            | 95                  | 3hr, 125 °C          | 48hr, 90 °C                |
| #2            | 95                  | 99hr, RT             | 72hr, 90 °C                |
| #3            | 72                  | 20.5hr, 90 °C        | 48hr, 90 °C                |
| #4            | 24                  | 4hr, 90 °C           | 72hr, 90 °C                |

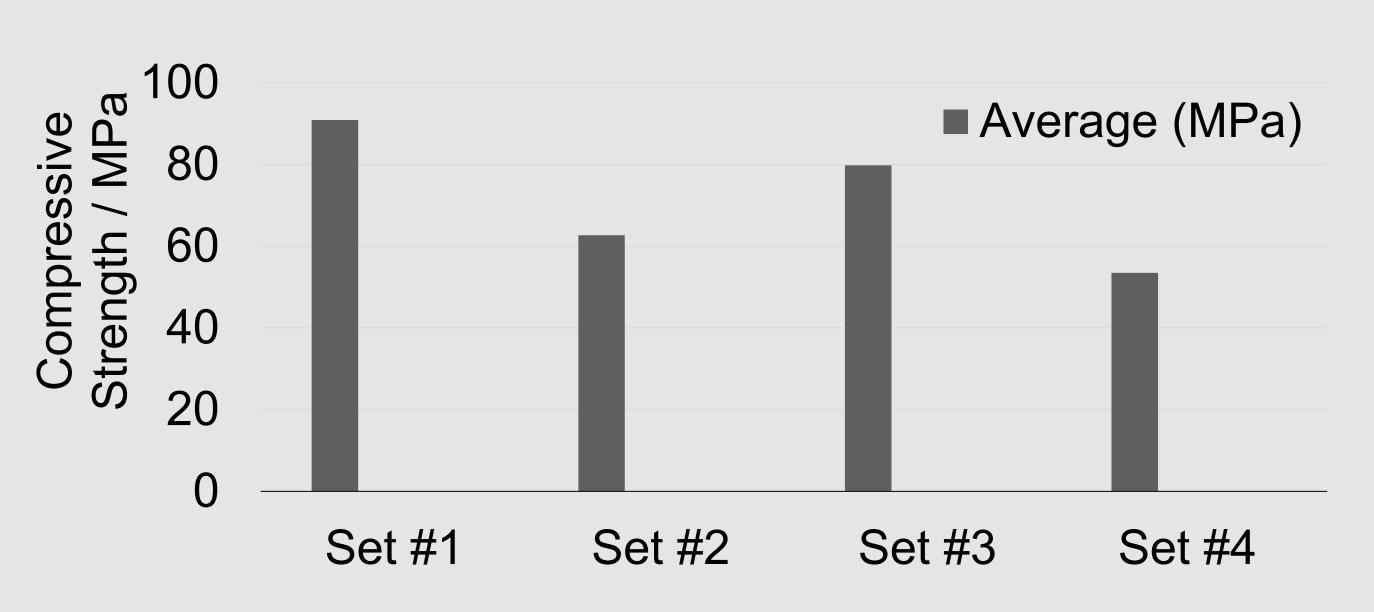



Figure 5: Compressive strength results of carbonated cylinder sets.

## **Future Direction**

- Optimize mix ratios for various application types and maximize recyclability.
- Decrease wollastonite-based binder while introducing recycled cement hydrate.
- Explore modifications to CO<sub>2</sub> carbonation procedure.