A Viable Low Carbon Footprint Alternative for Eastern Oyster (Crassostrea virginica) Reef Substrates

Sharbella Jacobs¹, Noemie Denis¹, Jenny Shinn¹, Emma Huntzinger¹, David Bushek¹, Richard Riman¹

Rutgers, The State University of New Jersey, USA

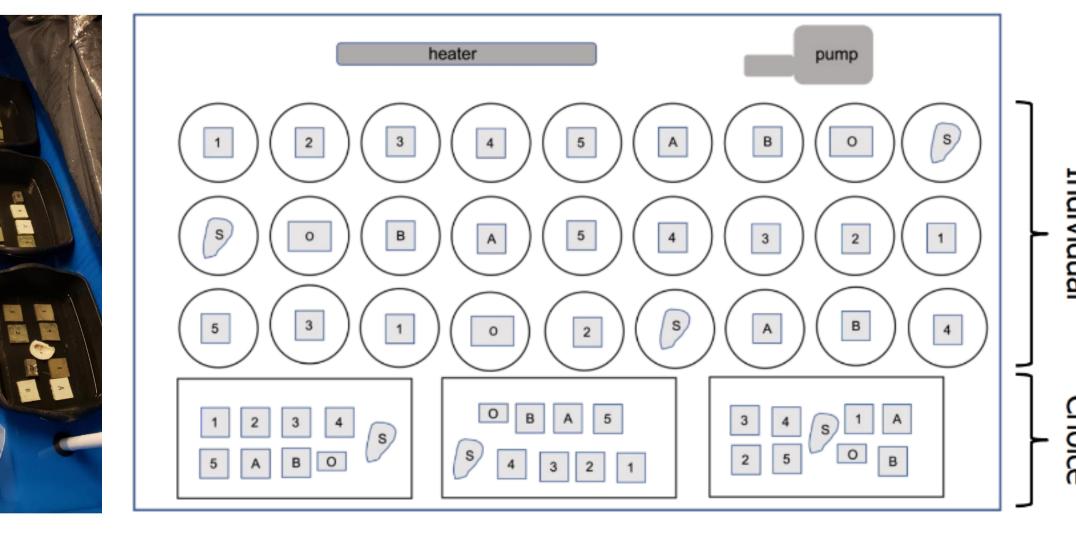
Abstract

- ~85% of oyster reefs are now extinct.
- Current oyster shell supply can't meet reef restoration needs.
- Concrete artificial reef structures are often used.
- Concrete production, however, accounts for 7% of global CO₂ emissions.
- Sustainable artificial reef structures are needed.
- For 2 months, larval settlement and juvenile oyster attachment strength were evaluated on:
 - A low carbon footprint cement
 - Oyster Castle®
 - Natural oyster shell
- Overall, the low carbon footprint material performed as well as oyster shell.
- Oyster attachment strength was weaker on low carbon footprint cement and concrete.

Introduction

- Oysters sustain estuaries, filtering 30+ gallons daily.
- Oysters grow best on oyster shells, which are becoming costly and rare.
- However, oysters will successfully set on a variety of hard substrates:
 - Non-oyster shell, dredged shell
 - Non-calcium stone, porcelain
 - Limestone
 - Concrete
- Concrete is more affordable, but it is not an eco-friendly product to produce (~7% of world's CO₂ emissions).
- More affordable, sustainable reef materials are needed.
- Sustainability can be reached through:
 - Reducing CO₂ from cement production
 - Waste heat recovery (WHR)
 - Utilizing lower-clinker and lower-carbon cements
 - Alternative fuels, digitalization, carbon capture and storage (CCS)
- In this study, a lower carbon material is evaluated for larval settlement and juvenile oyster attachment strength.

References


- 1. Beck, Michael W., Robert D. Brumbaugh, Laura Airoldi, et al. "Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management." *BioScience* 61, no. 2 (2011): 107–16. https://doi.org/10.1525/bio.2011.61.2.5.
- 2. Burke, Russell Paul. "Alternative Substrates as a Native Oyster (Crassostrea Virginica) Reef Restoration Strategy in Chesapeake Bay." Ph.D., The College of William and Mary, 2010. https://www.proquest.com/docview/576999203/abstract/2BB279D3E87A4124PQ/1.
- 3. Vakifahmetoglu, Cekdar, Jean Francois Anger, Vahit Atakan, et al. "Reactive Hydrothermal Liquid-Phase Densification (rHLPD) of Ceramics A Study of the BaTiO3[TiO2] Composite System." *Journal of the American Ceramic Society* 99, no. 12 (2016): 3893–901. https://doi.org/10.1111/jace.14468.

Mixing Mixing

Label Substrate 1 100% cement 2 75% slag 3 75% slag, 1.5% PCL 4 75% slag, 1.5% PLA 5 75% slag, 1.5% PHA A Low carbon cement w/ 10% wt. oyster shell (1-5mm crushed) B Low carbon cement w/ 50% wt. oyster shell (1-5mm crushed) O Oyster Castle S Oyster Shell

Individual & Choice Oyster Evaluations

Results

Month 2 Oyster Settlement

Figure 1. Oyster settlement 8-13 days post larval release in choice experiments.

Substrate

Figure 3. Oyster settlement 2 months post

larval release choice experiments.

sters/cm²)

(0) 0.8 0.7

0.2

Substrate

25%~75%

— Median Line

Mean

Outliers

Range within 1.5IQR

Shell

CHOICE REP 1

CHOICE REP 1

REP 2

B A 5 4 3 2

Figure 2. Oyster settlement 1 month post

larval release in choice experiments.

Figure 4. Oyster settlement 2 months post larval release choice experiments.

Discussion

- Findings suggest that low carbon cements offer a promising eco-friendly alternative for oyster reef restoration.
- Further enhancements to attachment strength are needed.

Figure 5. Technicians removing oysters shell on substrates.

	C	CS	OC	Shell
Mean Strength Ranking	1.2	1.0	3.6	3.2

Table 1. Attachment strength of oyster shells to low carbon cement and concrete, conducted in 2021.

	Low Carbon	Low Carbon		
	Cement	Concrete		
Mean Strength Ranking	3.17	2.0		

Table 2. Attachment strength of oyster shells to low carbon cement and concrete, conducted in 2024.

Acknowledgements

The authors wish to acknowledge the generous support of DARPA for this research and Dr. Bushek's team at the Haskin Shellfish Research Laboratory for their research contribution.