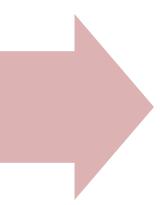
Climate Impact of Subcutaneous vs. Oral Anticoagulants: A Comparative Waste Assessment

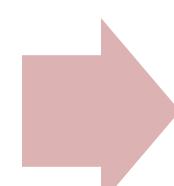
Shreya Gupta, BA¹, Catherine Chen, MD²

¹Rutgers Robert Wood Johnson Medical School, Piscataway, NJ; ²Department of Medicine, Robert Wood Johnson University Hospital, New Brunswick, NJ


Objective

- Gain exposure to the pharmaceutical supply chain within a large academic hospital, focusing on medication distribution and administration.
- Conduct a waste audit as part of a life cycle analysis (LCA) to compare the quantity and type of waste generated by different anticoagulation administration methods.
- Identify opportunities to improve healthcare sustainability by reducing waste and promoting environmentally responsible practices in clinical care.

Methods and Materials


Supply Chain Assessment

- A pre-clinical medical student surveyed the hospital's medication supply chain, including primary, secondary, and tertiary packaging and distribution pathways.
- Waste collection sites included the pharmacy, nursing units, and supply chain departments.

Process Mapping & Waste Categorization

- Each anticoagulation administration route (sub-Q, PO) was directly observed and mapped from preparation to disposal.
- Waste was categorized as packaging waste (e.g., syringes and blister packs) or administration waste (e.g., gloves, alcohol swabs, and plastic cups).

Quantification & Comparative Analysis

- All waste was weighed, and averages were calculated by dosage form and waste type.
- Comparative analysis identified differences by medication and formulation to highlight opportunities for waste reduction and sustainability improvement.

Background

- Healthcare systems are responsible for 8.5% of total greenhouse gas emissions in the United States, with pharmaceuticals accounting for 18% (1).
- Sustainable medication use can reduce healthcare systems' contribution to climate change.
- Anticoagulants are a medication used to prevent and treat blood clots and are available in subcutaneous (sub-Q) and oral (PO) formulations.
- Sub-Q and PO forms may produce different amounts of waste, thus carrying distinct environmental impacts.
- Research shows no significant difference in patient health outcomes between sub-Q and PO anticoagulation (2).

Results

Waste Quantification and Comparison

- Waste was collected from 11 subcutaneous (sub-Q) and 5 oral (PO) anticoagulation administrations, including all materials used in preparation and administration.
- Average total waste per administration: 18.83 g (sub-Q) vs.
 6.82 g (PO) nearly three times higher for sub-Q.
- Medication waste: 11.89 g (sub-Q) vs. 0.36 g (PO), indicating sub-Q formulations produce a larger proportion of medication-related waste.

Interpretation

- Administration route strongly influences overall waste generation.
- Sub-Q anticoagulants generate more packaging, consumables, and residual medication waste.
- Where clinically appropriate, transitioning from sub-Q to PO anticoagulants may significantly reduce total waste in anticoagulation therapy.

Future Direction

- Current literature comparing the efficacy of intravenous (IV), sub-Q, and PO anticoagulation methods will be reviewed.
- Waste produced by administration of intravenous (IV) anticoagulation (heparin drip) will be audited and compared to sub-Q and PO data.
- Sample size of sub-Q and PO administrations will be increased.
- Secondary and tertiary packaging waste will be quantified and compared between formulation types.

Acknowledgements

A sincere thanks to Dr. Chen for her mentorship and guidance throughout this project.

I am also grateful to the RWJUH physicians, nurses, and pharmacists for their cooperation and support in helping me collect this data.

References

(1) Shanoor Seervai, Lovisa Gustafsson, and Melinda K. Abrams, "How the U.S. Health Care System Contributes to Climate Change," explainer, Commonwealth Fund, Apr. 2022. https://doi.org/10.26099/m2nn-gh13

(2) Agnelli G, Becattini C, Meyer G, et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N Engl J Med. 2020;382(17):1599-1607. doi:10.1056/NEJMoa1915103